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Abstract
Organic electrochemical transistors (OECTs) exhibit significant potential for applications in
healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and
excellent biocompatibility. Expanding OECTs to the flexible devices will significantly facilitate
stable contact with the skin and enable more possible bioelectronic applications. In this work,
we summarize the device physics of flexible OECTs, aiming to offer a foundational
understanding and guidelines for material selection and device architecture. Particular attention
is paid to the advanced manufacturing approaches, including photolithography and printing
techniques, which establish a robust foundation for the commercialization and large-scale
fabrication. And abundantly demonstrated examples ranging from biosensors, artificial
synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable
prospects of smart healthcare. In the end, the challenges and opportunities are proposed for
flexible OECTs. The purpose of this review is not only to elaborate on the basic design
principles of flexible OECTs, but also to act as a roadmap for further exploration of wearable
OECTs in advanced bio-applications.

Keywords: flexible organic electrochemical transistors, wearable bioelectronics,
manufacturing approaches, device physics, neuromorphic applications

1. Introduction

Since the first appearance of organic electrochemical tran-
sistors (OECTs) in 1984 [1], OECTs have aroused enormous
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research attention and been explored from the operation
mechanism [2–5], materials selection [6–13], novel device
layout [5, 14–17], and various applications (such as biosensors
[18–23], neuromorphic computing [24–30], digital logic
circuit [14, 31–34] and tissue engineering [35–39]). Unlike
conventional three-terminal thin-film transistors, the opera-
tion of organic electrochemical transistor (OECT) is depend-
ent on mixed ionic-electronic interactions and coupled trans-
port mechanisms, electrolyte ions permeate the active chan-
nel volumetrically and regulate the semiconductor’s redox
state [40], thus leading to a tunable channel current. This
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ion–electron coupling effects offer extraordinary advantages
for OECTs, including high transconductance (up to the
milliSiemens level in micron-scale devices), low operating
voltage (below 0.5 V), and excellent biocompatibility [10]
Thus, OECTs with micrometer-scale size possess high sig-
nal amplification capabilities, low power consumption, and
compatibility with the surrounding biological environment,
making them ideal for a variety of bioelectronic applications
[41, 42], and it is noteworthy that the estimated market size
for OECT-based biosensors is a substantial US$ 13 billion
annually [43, 44].

Recently, reviews focusing on semiconductors design [6,
45, 46], fundamental device physics [10, 47], and bioelec-
tronics applications have been conducted to summarize the
rapid development of OECT [48]. Despite this, the stud-
ies in question have primarily dealt with inflexible OECTs,
a feature that could introduce interface anomalies and trig-
ger immune responses within biological tissues. To mitig-
ate this concern, the incorporation of polymer semiconduct-
ors, characterized by low Young’s modulus and straight-
forward device design, makes OECTs a highly promising
candidate for flexible and stretchable electronics [49, 50].
Flexible OECTs have been developed for skin electronics,
with research involving soft functional materials, biocom-
patible devices, and healthcare-related applications [51–53].
Undoubtedly, the particular interest of flexible OECTs is their
skin-conformable and even implantable capabilities, which is
expected to change the way humans interact with the world
in the future [54–56]. A critical challenge in flexible OECTs
is the design and optimization of soft functional materials [57,
58]. The superposition of requirements in electric andmechan-
ical engineering makes the material structure complex. In gen-
eral, multi-component composites and modification strategies
are utilized to achieve compatible electrical and mechanical
properties. However, cumbersome synthesis processes and
expensive costs limit the development of material engineering
[49]. As an alternative solution, manufacturing techniques
could enhance flexibility via optimizing mechanical-structure
design and dispersing stress, with greater feasibility for exist-
ing materials [35, 59–61]. However, few reviews have sum-
marized and analyzed the characteristics of these advanced
micro-nanomanufacturing techniques. Moreover, as the social
economy rapidly progresses, there is greater attention on life
sciences and healthcare, with the purpose of elevating, sub-
stituting, and extending human bodily functionalities [18].
According to reported flexible OECT-based bioelectronics,
biosensors for detecting physical, chemical and biological sig-
nals, artificial synapses for mimicking human learning and
memory functions, and bioinspired nervous systems for sens-
ing, transmitting and processing signals, have been developed.
A review is urgently needed to summarize and analyze the
research progress and roadmaps for the development of flex-
ible OECT in diversified bioelectronic applications.

In this review, we offer a comprehensive overview of the
latest developments in flexible OECTs, particularly focus-
ing on corresponding advanced manufacturing techniques and

Figure 1. Systematic outline of this review. A combination of soft
materials (the foundation of flexible OECTs), optimized device
structure design, and advanced manufacture techniques for
functionalized OECTs and explored integrated neuromorphic
system applications. In contrast, realistic scenario-oriented
applications also make demands on material selection and device
functionality. Such positive closed loops have facilitated the
development of flexible electronics.

demonstrated bioelectronics applications. Here, the applic-
ation examples involve flexible (uniaxial deformation) and
stretchable (out-of-plane bending) mechanical deformations,
and no obvious distinction between flexibility and stretchab-
ility is made. The first two chapters elaborate on the work-
ing mechanism and flexible functional materials. The third
part summarizes and analyzes the characterizations of com-
monly used fabrication technologies for flexible OECTS,
including photolithography and screen/inkjet/transfer print-
ing. And representative examples are given with detailed
parameters presented. In the fourth part, we summarize
advanced applications of flexible OECTs in the field of bio-
electronics, which are mainly classified into three categories:
physical/chemical/biosensors; artificial synapses/neurons; and
bioinspired neuromorphic/nerve systems. In the end, we give
an overall summarization and discussion on the challenges that
lie ahead and future research directions of flexible OECTs.
And figure 1 presents a systematic outline of this review.

2. Device physics

2.1. Working mechanism

The operating mechanism of OECT relies heavily on the volu-
metric capacitance of organic semiconductors [3]. The electro-
lyte ions compensate for charges in the channel via applying
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Figure 2. Schematic illustration of operating mechanism and different architectures of flexible OECTs. (a) Fundamental comprehensive
about OECT device physics. (b) Transfer curves of depletion and accumulation modes of OECT. (c) Typical device structures for OECT,
including top-gated OECT, side-gated OECT, vertical OECT, and fiber-based OECT.

gate voltage, thereby modulating the electrochemical dop-
ing state of the transistor channel. Specifically, when apply-
ing gate voltage, ions (anion or cation) are injected from the
liquid or solid electrolytes into the organic semiconductor
films. Therefore, the introduction of electronic charge from
the source electrode balances the extra charges (holes or elec-
trons), subsequently enhancing the charge density within the
transistor channel and enabling control over the output cur-
rent of p- or n-type OECTs. The redox state fitting with the
channel conductivity, enables excellent transconductance val-
ues (up to milliSiemens) for micrometer-scale OECT devices
[36]. As described in figure 2(a), fundamental device physics
theory of OECT is based on the Bernards model [62], consist-
ing of an electronic circuit and an ionic circuit. Ionic and elec-
tron circuits represent that ions movement through the gate-
electrolyte-channel structure and electrons movement through
the source-channel-drain structure, respectively. Specifically,
the electronic circuit is considered to be an adjustable res-
istor, so that the local potential regulates the drift behavior of
electrons. And the ionic circuit incorporates a series resistor–
capacitor structure, allowing ions to flow in the electrolyte and
be stored in the channel. Such a model well fits the experi-
mental results of OECT, and a quantitative prediction of the
transconductance (gm) that can be derived from the following
formula [63]:

gm = (W/L) · d ·µ ·C∗ · (Vth −VG)

where d, L and W represent the thickness, length and width
of channel. µ and C

∗
represent the carrier mobility and the

channel capacitance, influencing the ionic–electronic transport

and coupling process. VG and V th represent the gate voltage
and threshold voltage, respectively. gm is the most import-
ant parameter of OECT and characterizes the signal amplific-
ation ability. Noteworthy, gm is associated with the channel
thickness in OECT, while it is not in traditional field effect
transistors [64].

Optimized gate electrodes facilitate the realization of
highly efficient gating inOECT [11], because the potential dis-
tribution in the transistor channel relies on the intrinsic prop-
erties and geometry of the gate electrodes [65]. Employing
polarizable electrodes (e.g. gold or platinum) as gates, two
capacitors in the ionic circuit will be formed [3]. One of capa-
citor pertains to the electrical double layer established at the
interface between the gate and electrolyte, while the second
is associated with the volumetric capacitance of the semicon-
ductor. However, the applied gate voltage drops significantly
at the smaller capacitor of the series double capacitor, thus
limiting the output performance [66]. To realize the efficient
gating, enlarged geometry and modified surface for gate are
feasible to maximize the capacitance at gate-electrolyte inter-
face. For example, thick poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT: PSS) was directly deposited
onto the Au gate to minimize the electrochemical impedance
between the transistor channel and Au gate electrode [67].
Alternatively, non-polarizable Ag/AgCl electrode also enables
minimizing the voltage drop for efficient gating at the gate-
electrolyte interface.

According to the operating mode of OECT, it can be
divided into depletion and accumulation modes, as illustrated
in figure 2(b). In depletion mode, devices typically exhibit
high current state without gate voltage, since channel polymer
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Table 1. Summary of key parameters of typical OECTs reported in recent five years.

Channel materials Flexibility Electrolyte V th (V) SS (mV dec−1) gm (mS) On/off ratio References

PEDOT: PSS 8 0.1 M NaCl 0.52 210 0.48 ∼4 [70]
PEDOT: PSS/TX 8 PVA hydrogel 0.36 / 48.7 / [71]
PTBT-p (planar) 8 Ion gel (EMIM: TFSI: PVDF: HFP) / 114 ∼3.5 104 [72]
P3gCPDT-MeOT2 8 0.1 M NaCl −0.12 / 8.4 ∼104 [57]
p(g0T2-g6T2) 8 0.1 M NaCl ∼0.1 / ∼10.2 105 [73]
PgBTTT 8 0.1 M NaCl ∼21 ∼60 ∼21 ∼105 [74]
BBL152 8 0.1 M NaCl 0.15 ∼60 ∼44 2 × 105 [75]
gDpp-g2T/Cin-Cell 8 1x PBS ∼0.1 ∼62 ∼384.1 ∼106 [14]
P(gTDPP2FT) 8 0.1 M NaCl 0.64 / 0.93 5 × 106 [76]
Pg42T-T 3 PQ-10 hydrogel 0.22 / ∼0.17 / [77]
Pg2T-T 3 0.1 M NaCl / / ∼20 >103 [78]
PEDOT: PSS 3 PSSNa gel / / 3.9 ∼103 [79]
PEDOT: PSS/PEI 3 0.1 M NaCl / ∼400 ∼52 9 × 104 [80]
PEDOT: PSS 3 Polyelectrolyte / / / ∼105 [81]
DPP-g2T 3 0.1 M KPF6 0.28 / 2.79 ± 0.09 106 [82]

are highly conductive with an excess of free charge carriers
[68]. PEDOT: PSS represents the most typical channel mater-
ial operating in depletion mode, once gate biased with posit-
ive voltage, cations present in the electrolyte are injected into
the semiconductor bulk and result in the compensation of the
anions, thus the device is switched from ON to OFF state.
In accumulation mode, OECT is switched from OFF to ON
state when applying a gate. The drain currents increase with
ions injecting and accumulating in the channel. Owing to the
low power consumption, effort has been devoted to developing
p-type and n-type redox active semiconductors operating in
accumulation mode [69], which presenting a great application
potential in low-power and wireless bioelectronics. Table 1
summarizes the key parameters of typical OECT devices (rigid
and flexible) reported in recent five years, to provide a research
benchmark for further high-performance flexible OECTs.

2.2. Device geometries

The construction of flexible OECTs involve four types of con-
figurations: top-gated, side-gated, vertical, as well as fiber-
based (figure 2(c)). This section provides a summary of the
characteristics of these configurations and explores potential
applications.

The top-gated geometry is the most commonly used for
OECT owing to its ease of fabrication, where prefabric-
ated test chips with patterned source/drain electrodes can
be used and then only deposit the semiconductor layer [15,
16, 38]. In this structure (figure 2(c–i)), electrolyte and gate
electrode are positioned sequentially above the channel, so
that the signals can be recorded via adding aqueous electro-
lyte (such as phosphate-buffered saline (PBS) solution and
ionic liquid) directly with the local electrical signals upon
the gate input [37]. Therefore, top-gated configurations have
been extensively used as neural interfaces, and tissue engin-
eering in vivo for recording physiological electrical signals
and detecting biomarkers [8, 34, 76]. However, low gm value
and poor operation stability are obtained in such design due

to the large channel length. Besides, the material toxicity of
semiconductors requires additional attention to avoid causing
immune reactions [83, 84]. In the general tests, gate electrodes
(such as Ag/AgCl probe) are immersed into aqueous electro-
lyte which can work well for temporary experiments. But it
is not adequate for a long-term testing, especially for in vivo
applications where sutures are required to close the wound.
As an alternative selection to probe gate electrode, side-gated
OECTs (figure 2(c–ii) have been developed, in which gate,
drain and source electrodes are deposited on the same plane
[9, 85–87]. Meanwhile, an intimate contact between electro-
lyte and the biological system is yielded in such coplanar con-
figurations. Consequently, they are more desirable for wear-
able and implantable applications [88]. Furthermore, side-
gated structure composites the promising candidate for the
site-specific detection of biomolecules owing to the facilitated
gate functionalization [24]. However, it is the same story for
side-gated OECTs with unsatisfactory gm values and opera-
tion stability induced by the large channel length. To enhance
the amplification capability and operational stability, vertical
OECT (vOECT) has been proposed, with a nanometer-scale
channel length (figure 2(c-iii)) [14, 89–92]. In this architec-
ture, the source, channel and drain are aligned in a vertical
direction, and the thickness of the semiconductor determines
the channel length. Electrochemical performance and device
density of vOECT are better than that in planar devices. To
modulate the channel and control the transistor’s behavior,
the electrolyte must interact with the channel material through
the edges of the top electrode, because the ions in the elec-
trolyte cannot pass directly through the dense gold electrode,
and the electrochemical process of doping requires a lateral
drift from both edges to the bulk of the transistor channel. The
gm value of vertical structure is surpassed even 1000 times of
planar structure [14]. These advantages enable to implement
high-performance and high-density OECTs for flexible bio-
electronics. However, the fabrication conditions of vOECTs
are slightly more demanding than those of coplanar structures.
A lower-temperature condition is required when depositing
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Table 2. The comparation of characteristics of the four kinds of OECT geometries.

Device
geometry Characterization Advantages Disadvantages Application scenarios

Top-gated â Commonly used.
â Electrolyte and gate

electrode are positioned
sequentially above the
channel

â Ease of fabrication â Low transconductance
â Low operation stability
â Large channel length

â Physiological
electrical signals

â Ions detection
â Neural interfaces
â Tissue engineering

Side-gated â Source, drain and gate
electrodes are deposited
on the same plane

â Ease functionalization
of the gate electrode

â Low transconductance
â Low operation stability

â Site-specific detection
of biomolecules

Vertical
configuration

â Source, channel and
drain are vertically
aligned.

â The channel length is
determined by the
thickness of
semiconductor

â High transconductance
â High operation stability
â Ultrathin channel length

in nanometer scale
â High density

â Requires low
temperature vapor
deposition.

â Destroy the crystallinity
of the channel materials

â High density logic
circuit

â High density neural
interface

Fiber â Two fibers are utilized
as source-drain and gate
electrodes.

â Source-drain fiber is
coated with
semiconductor, and the
electrolyte is filled in
the micro-gap between
the two functionalized
fibers

â High mechanical
flexibility

â Difficult to fabricate
â Poor homogeneity
â Low yield

â Wearable biomarker
sensing

conductive metal onto the semiconductor to avoid damage
to crystallinity of the active channel from high temperatures.
OECTs can also bemanufactured from flexible and stretchable
fibers, allowing to woven/integrate themwith fabrics for wear-
able electronics [21, 93–95]. In figure 2(c-iv), two fibers are
utilized as source-drain and gate electrodes. Source-drain fiber
is coated with semiconductor, and the electrolyte is filled in the
micro-gap between the two functionalized fibers for driving
the OECT. Such fiber OECTs possess excellent mechanical
deformation ability, and a maximum stretchability more than
50% and minimum bending radius of 0.6 mm are achieved
[21]. Such excellent mechanical flexibility enables its applic-
ation in wearable biosensing. Nevertheless, compared to the
above three thin-film OECTs, the fabrication process of fiber
OECTs is more difficult and complex, with poor homogen-
eity and low yield. And table 2 summarizes the characterist-
ics of the abovementioned four kinds of OECT geometries. In
addition to these structures, a biocompatible, adaptable, stable,
high-speed, and highly conductive internal ion-gated organic
electrochemical transistor (IGTs) structure has also been pro-
posed for integrated bioelectronics applications [96, 97]. IGTs
embedded electrolytes ions into the conducting polymer of
the transistor channel, creating a self-(de)doping process that
eliminates the need to exchange ions from a shared external
electrolyte. This feature allows personalized transistor gating
and a time constant of 2.9 µs, substantially faster than other
reported OECT structures.

3. Functional materials

Not only electrical properties but also mechanical characteriz-
ations (such as flexibility, stretchability and elasticity) of func-
tional materials should be taken into account when using flex-
ible OECTs in skin-integrated devices in vitro and implant-
able devices in vivo. In this part, we present a comprehensive
summary of the representative examples of functional materi-
als used in flexible and stretchable OECTs from four aspects:
substrate, electrodes, organic semiconductors, and electrolyte,
as depicted in figure 3.

3.1. Flexible materials

As the foundation of flexible OECTs, substrates are required to
have excellent tissue conformability and mechanical stability
so as to fit the non-planar and malleable surfaces. Polymers,
such as polyimide (PI) and polyethylene terephthalate (PET)
[33, 53, 98, 99], are most commonly used as substrates due
to their unique combination of mechanical, chemical, and
thermal properties. Note, bending radii and substrate thick-
ness affect the mechanical strain on the surface of functional
materials [20]. Hence, micro- or nano-scale films prepared
from brittle materials (such as ceramics, glasses, or certain
types of polymers) can be bent to a certain extent, offering
more possibility and scalability for flexible substrates. The
choice of substrate depends on the specific requirements of the
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Figure 3. Commonly used representative examples for flexible OECTs, including substrates, electrodes, p- and n- type channel materials as
well as electrolytes.

device, such as mechanical flexibility, electrical performance,
transparency, and compatibility with other device compon-
ents. Different substrates may be selected based on the inten-
ded application and desired performance characteristics of the
OECT.

Electrodes (gate, source and drain) materials are one of
the key elements for the construction of flexible OECTs. As
described above in the section on working mechanism, a gate
electrode with efficient gating ability is crucial for realizing

excellent transconductance performance. In general, PEDOT:
PSS-modified gold and non-polarized Ag/AgCl are commonly
used as gates [96]. In addition, conductive polymer (PEDOT:
PSS) and carbon material (graphene and carbon nanotubes)
have also been explored as gate materials in flexible OECTs
[100, 101], and the OECT electrochemical performance based
on traditional and novel gate materials depends on the spe-
cific application requirements and the specific material used.
On the other hand, source and drain electrodes should possess
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Table 3. Comparation of typical p- and n-type OECT materials.

OMIECs Materials Advantages Disadvantages µC∗ (F cm−1 V−1 S−1) References

p-type PEDOT: PSS High conductivity Poor stability 47± 6 [119]
Transparency High consumption

P3MEEMT Biocompatibility Low stability 49 ± 5 [110]
Large volumetric capacitance

P(g2T-TT) High mobility Complexity of synthesis 261 ± 29 [120]
Low operational voltage

n-type BBL Reliable stability Brittle 26 ± 3 [75]
Large volumetric capacitance Limited solubility

PgNgN Nontoxic synthesized Low mobility 0.66 ± 0.11 [112]
Poor stability

HOMO-gDPP High mobility Synthesis complex / [14]
Ultra-High stability

capabilities of intrinsic flexibility, high conductivity, suitable
Fermi level, low contact resistance with semiconductors, and
desirable biocompatibility. Metallic materials offer great con-
ductivity but are mostly electrochemically unstable (e.g. sliver
and aluminum). It is challenging to achieve a long-term sta-
bility in OECT devices using such unstable metals. Because
if the electrode material is electrochemically unstable, it can
react with the electrolyte or the transistor channel, leading to
changes in the device performance or even complete device
failure. Therefore, Au is the most representative electrode
in flexible OECT. Tremendous polymer electrodes have also
been developed for flexible OECTs, such as polypyrene, poly-
aniline, and polythiophene [102, 103]. However, studies on
flexible OECTs are still in their infancy, resulting in less focus
on polymer electrodes.

Organic semiconductors possess mechanical flexibility and
a customizable molecular structure that facilitates efficient
coupling and transport of ions and electrons. These channel
materials typically have conjugated backbones and side chains
for electron conduction, making them readily amenable to ion
intercalation from the electrolyte being manipulated. And
their low Young’s modulus values (5 kPa–140 MPa) are sim-
ilar to those of living tissue (0.1 kPa–1 MPa) [104], are far
below the high modulus values of inorganic semiconductors
(>10 GPa) [105]. According to the doping modes of the chan-
nel material, it can be divided into two types: p-type, which
exhibits an excess of positively charged holes, and n-type,
which exhibits an excess of negatively charged electrons.
A commercial p-type material commonly used for flexible
OECTs is PEDOT: PSS because of its low loss, biocompatib-
ility and flexibility [99, 106, 107]. To some extent, materials
engineering towards themolecular design of side chains, back-
bones and other additives opens up design space for break-
throughs in enhancing OECT material properties [78, 108,
109]. Thus, both p-type and n-type semiconducting materi-
als have been gradually designed. However, the majority of
high-performance OECT channel materials are derived from
previously reported polymer structures used in organic field-
effect transistors. Typical p-type polymers include poly(3-
{[2-(2-methoxyethoxy)ethoxy]methyl} thiophene-2,5-diyl)

and poly(2-(3,3-bis(2-(2-(2-methoxyethoxy)ethoxy)-ethoxy)-
[2,2′-bithiophen]-5-yl)thieno[3,2-b] thiophene) (P3MEEMT
and P(g2T-TT)), etc [74, 110, 111]. Additionally, in addi-
tion to Poly(benzimidazobenzophenanthroline) (BBL) and the
recently published PgNgN, the predominant n-type systems
extensively examined are founded on naphthalenediimide
derivatives [45, 75, 112], as illustrated in table 3. As for active
channel materials, π-conjugated polymers or small molecules
are fabricated by solution methods [113], such as spin-coating
[114] and blade-coating [115]. Furthermore, various prepara-
tion strategies have been demonstrated to optimize the OECT
electrochemical performances. Interfacial engineering (small
molecule additives [116] and mixed solvents [117]) and post-
treatment (annealing [110]) and acid treatment [118]) can
effectively reduce surface traps, improve chain aggregation,
and increase charge carrier mobilities. Therefore, through
materials engineering, the newly designed and synthesized
p- and n-type organic semiconductor materials are desired to
enhance the output performance and mechanical stability in
flexible OECT devices.

The electrolytes play critical effects in the whole OECT
device. First, electrolytes provide wandering ions which dom-
inates device capacitance, switching time, and operating
voltage. Then electrolytes determine the system flexibility
when OECTs are integrated with other intelligent systems.
Electrolyte materials can be the forms of liquids, solids or
gels, all of which have intrinsic mechanical flexibility to
facilitate the integration of flexible OECT devices in bio-
interface and sensing applications [11, 121, 122]. Aqueous
salts and ionic liquids (ILs) are typical liquid electrolytes,
whereas salt type and concentration would result in various
solvation shells that obviously affecting the output perform-
ance. By contrast, ILs are composed entirely of anions and
cations. Although liquid electrolytes allow efficient gating and
faster response times, the intrinsic liquid environment limits
a wider range of applications. Therefore, ion gels as a semi-
solid compound that maintains high ion mobility owing to the
incorporation of an IL into the crosslinked polymer network,
have been commonly employed to fabricate flexible OECTs.
Besides, polymer electrolytes and polyelectrolytes (triblock
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copolymer (PS–PIL–PS)), as solid electrolytes are capable
of providing the transport of ions mobile, can also exhibit
excellent capacitance (∼1 µF cm−2) performance in OECT
devices [123].

3.2. Stretchable materials

Besides, stretchability is vital and highly expected for numer-
ous applications, such as skin-mounted biosensors and tissue-
conformal bioelectronics. It is well known that stretchable
devices are extensions of flexible devices, since the stretch-
ability enables the device to easily conform to the deform-
able human tissue, especially for tensile deformations, such
as the movement of the elbow joint in vitro and contraction–
relaxation of the heart in vivo. Such a property enables
intimate contact between the electronic devices and the act-
ive tissues during the tensible deformation, which avoids
motion artifacts and enhances the detection accuracy [35,
124]. The stretch limit of device depends on the substrate
since most of the stress is dispersed here. Typical sub-
strates used for stretchable OECT are poly(dimethylsiloxane)
(PDMS), and polystyrene-block-poly(ethylene-ran-butylene)-
block-polystyrene (SEBS) and EcoFlex elastomers [82, 125,
126]. Moreover, fiber and textile have been utilized as stretch-
able substrates, such as elastic cotton fiber and nylon [127,
128], which allows for the development of wearable electron-
ics that can be comfortably worn on the body while maintain-
ing stretchability.

Stretchable electrodes in OECTs that can undergo mech-
anical stretching or deformation without compromising its
electrical performance is the most basic requirement. To
make stretchable electrode for OECTs, researchers often
employ elastic conductive materials that can withstand mech-
anical strain while maintaining good electrical conductivity.
Commonly used stretchable electrode is Au, tremendous
efforts has been made to offer Au stretchable via strain-
dissipative geometries, such as transfer gold electrode to pre-
stretched substrate, design honeycomb grid structures and syn-
thesis gold nanowire networks [82, 129–131]. More recently,
PEDOT: PSS, a conductive polymer inherently brittle due to its
relatively high crystallinity, has been successfully engineered
to be stretchable OECT electrodes by blending it with surfact-
ants or plasticizers [107, 126]. However, PEDOT: PSS, as a
typical transistor channel material with electrochemical activ-
ity, should be further considered when used as the source and
drain electrodes. In addition to the choice of stretchable con-
ductive electrodes, the design and fabrication methods play a
crucial role in creating stretchable electrodes for OECTs [132].
Techniques like printing, or solution processing can be further
used to pattern or deposit the electrodematerials onto substrate
substrates. These methods allow for the fabrication of stretch-
able electrodes with controlled dimensions and desired prop-
erties. Overall, the development of stretchable electrodes for
OECTs is an active area of stretchable OECT, aiming to enable
the integration of electronic devices with soft and deformable
materials for applications.

Stretchable semiconductors are an emerging field of
research in OECT that aims to develop mixed ionic-electronic

coupled materials capable of stretching and conforming to
various shapes without compromising their functionality.
Several approaches including strain engineering, microstruc-
ture engineering, or packing structure engineering have been
explored to develop stretchable semiconductors for OECTs,
one of the most commonly used materials for stretchable
OECT is PEDOT:PSS [108, 129–131, 133], which offers
the combination of high conductivity, processability, mech-
anical flexibility, and ion transport properties. However,
PEDOT:PSS, being a heavily doped conjugated polymer, can
only operate in depletion mode, which is not desirable for
low power consumption. Substantial progress has recently
been focused on the development of non-doped redox-active
semiconductor polymers (DPP-g2T, Pg2T-T) [78, 82], which
not only lead to the operation of OECTs in enhancement
mode, but also improve the electrochemical properties such
as electrical performance, stability, etc. These polymers are
typically synthesized to have a stretchable molecular struc-
ture, allowing them to withstand mechanical deformation.
Besides, in terms of microstructure design, conventional three-
dimensional (3D) porous elastic semiconductor films based
on P3HT can improve both ionic-electronic coupling trans-
port properties and mechanical tensile properties [15, 16].
Although some progress has been realized with stretchable
OECT semiconductor materials, addressing challenges related
to soft material design, stability, fabrication, and perform-
ance trade-offs is critical to their successful implementation
in future OECTs.

4. Manufacturing approaches for OECTs

The development of commercially available OECTs that
are flexible, scalable, and consistently reproducible demands
the establishment of robust manufacturing strategies. In this
section, a variety of advanced manufacturing approaches have
been summarized, encompassing methods such as photolitho-
graphy, a well-established process involving light exposure to
create patterns, as well as diverse printing techniques that offer
promising scalability and cost-effectiveness [18].

4.1. Photolithography

Photolithography technique represents the core process for
manufacturing electronic devices. It is particularly important
for OECT devices, as the active area must be small enough
to provide high on/off ratios and fast transient times, yet
large enough to allow efficient charge transport [14, 90, 134–
136]. In addition, photolithography provides a cost-effective
method of fabricating high-density OECT arrays, making it an
ideal candidate for multichannel and nanoscale bioelectronics
[85, 137–139]. The photolithography technology typically
involves five steps, including photoresist coating, ultraviolet
light exposing, developing, etching, and photoresist removing
(figure 4(a)). It should be addressed that the above process
is repeated several times, as needed, to produce a multilayer
OECT device. In a typical fabrication approach for OECT,
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Figure 4. Two typical photolithography techniques for OECT fabrication. (a) Conventional photolithography technique for OECT, typically
involves several steps, including substrate preparation, active layer coating, exposure, development, etching, and substrate cleaning. (b)
Novel photolithography technique for patterned semiconducting films with high resolution (sub-10 nm), including the chemical structures
of semiconducting polymers, polyelectrolyte, and redox-inactive cross-linkable polymer, as well as SEM image of patterned
semiconductors. Reprinted from [122], with the permission of AIP Publishing.

the substrate is initially coated with a uniform organic mixed
ionic–electronic coupled and transport semiconductor, fol-
lowed by patterning the semiconductor via photolithography
and etching [18].

Conventional photolithography techniques are conducted
under the assisted of photoresists (such as AZ4620, AZ5214,
and SU8), and the precision of photolithography depends
on lithography machine, the physicochemical properties of
the photoresist, and the etching speed of the material being
lithographed. Photolithography techniques is paramount for
advanced micro-, nano- OECT devices due to its ability to
impart high precision and accuracy, enabling the creation of
intricate structures with fine details. For instance, Jimbo et al
demonstrated a record channel length as small as 5 µm via
the liftoff process [140]. Typical performance gm of two mil-
liSiemens (mS), and fast response time of 62 µS have been
achieved. Wu et al developed 100-channel OECT arrays in
64 mm2 by continuous photolithography processes [38]. And
yielded excellent spatiotemporal resolution of 1.42 ms and
20 µm and tissue-compatible mechanical properties, enable
OECT an efficient neural interface for mapping rats’ brain
activity. In addition, Takao Someya research group developed

a transparent and ultraflexible OECT array via photolitho-
graphically prepared Au grid wirings, where 1.2 µm perylene
was used as substrate [37]. The micropatterned Au grid (with
a 3 µm linewidth) exhibited 60% transparency at 475 nm,
which offers a technology road for mapping evoked responses
from optogenetic rats. Besides, great mechanical durability
was verified by cyclic tests of sheet resistance.

However, limitations of conventional photolithography
techniques still exist in their application to organic semicon-
ductors, including material incompatibilities and vulnerabil-
ities during solution handling, which hinder the miniaturiz-
ation and scalability of organic electronics. This results in
a significant lag in the advancement of organic electronics
compared to silicon electronics. Especially for using in flex-
ible OECTs, process compatibility, device scale, and pho-
tolithography precision should be taken into account [141].
The photoresist processes (such as photoresists, developers,
and photoresist-removers) may corrode the organic functional
materials [136]. On the other hand, the quality of organic films
can affect the spin-coating of photoresist, leading to a negat-
ive effect on pattern fidelity. Consequently, un-uniform and
defective organic films are obtained, which will result in poor
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electrochemical performance and operation stability. Besides,
the minimum accuracy of the photolithography process is on
the sub-micro scale, leading to large channel lengths and low
transconductance values of OECTs. This is due to the fact that
the transconductance values of OECTs are not only determ-
ined by the physicochemical properties of channel materials
but are also related to the device size. Specifically, OECT with
short channel length and large channel width enable greater
transconductance [3, 5].

Thus, the development of foundry-compatible organic
semiconductors patterning methods that maintains device per-
formance has potentially revolutionize the OECT industry
[142, 143]. Recently, Kwak et al reported photo-patternable
organic mixed ionic and electronic conductors (OMIECs)
by introducing a photocross-linkable material (thane-1,2-diyl
bis(4-azido-2,3,5,6 tetrafluorobenzoate)) into ion-conducting
conjugated polymers to address these challenges (figure 4(b)).
When this cross-linker is used in polymer cross-linking reac-
tions, the azide group (–N3) is usually involved in the reac-
tion and can react with a suitable alkyl-functionalized poly-
mer or molecule containing an alkyl molecule. This chem-
istry of the cross-linking reactions involving azido compounds
relies on the highly efficient and selective click chemistry
reactions, enabling the formation of stable and robust cross-
linkages in polymer networks. The patterning technique is
exceptionally efficient as it only necessitates three steps,
making the manufacture process simpler than conventional
photolithography [142], in which a blend film of semicon-
ductor/electrolyte and crosslinkers can be patterned directly
via UV light-triggered crosslinking. With this patterning tech-
nology, flexible OECTs were evaluated and presented high
carrier mobility (3.4 cm2 V−1 s−1) and reliabe mechanical
stability, with minimal degradation in OECT output perform-
ance, even after undergoing 5000 bending cycles at radius of
only 0.1 mm. Similar photo-crosslinker also have been con-
ducted in advanced vOECT [14], Huang et al proposed photo-
patternable OMIECs by introducing cross-linkable material
(Cin-Cell) into ion-conducting conjugated polymers. Vertical
OECTswere evaluatedwith footprint current densities ofmore
than 1 kA cm−2 at less than ±0.7 V input voltage, tran-
sient times shorter than 1ms, transconductances up to 0.2–
0.4 S and stable on/off switching (>50 000 cycles) are real-
ized simultaneously. Such lithography technique has achieved
remarkable progress, future work focus on patterning OECT
can start from the following directions: (1) introduction of
crosslinking agents to enhance lithography performance also
requires attention to the balance of electrochemical properties.
(2) Scalability of photocrosslinking has not been systematic-
ally demonstrated, and achieving high-resolution and stable
crosslinking through semiconductor materials and electrolytes
is critical. Photopatterning semiconductors and electrolytes
enables precise, scalable creation of multifunctional OECTs
compatible with established fabrication techniques, including
solid-state integrated circuits, neuromorphic computing, and
bioelectronics. The challenges include, first, developing suit-
able photosensitive materials and understanding their compat-
ibility with electrolyte formulations; second, optimizing the

photopatterning process to achieve high resolution and min-
imal photodamage is critical for practical implementation. (3)
Limited by the structural complexity and lack the necessary
functional groups or reactive sites to undergo efficient cross-
linking of small molecule semiconductors, currently available
photocrosslinkers are mainly for polymeric semiconductors,
therefore, in the future there is a need to develop efficient
crosslinkers via molecular engineering design that can cross-
link not only in polymeric semiconductors, but also in small
molecule semiconductors. These critical advances in photo-
lithography and photo-patterning of OECTs provide insights
for the future commercialization of stable integrated organic
devices.

4.2. Printing

Printing technologies have also attracted significant interest in
flexible OECT devices, as pairing functional materials with
printing technology enables to achieve high-throughput, large-
scale and low-cost electronic devices [32, 144–146]. Well-
known printing technologies including screen printing [32, 81,
147–150], inkjet printing [151–153], 3D printing [79, 154],
transfer printing [107, 155], and aerosol jet printing [156, 157]
have been implemented to fabricate flexible OECTs. Each
printing technique needs ink with different physical or chem-
ical parameters and offers different resolutions for functional
patterns. For example, screen printing, typically uses inks with
high surface tension and viscosity, as well as good adhesion
to the substrate and durability. Inkjet printing, on the other
hand, typically requires inks with lower viscosity and surface
tension, as well as good solubility and stability in the inkjet
printer’s ink reservoir. Notably, the resolution of screen print-
ing is generally lower than inkjet printing, as it relies on the
mesh count and thickness of the ink. Therefore, it is crucial to
consider the most suitable inks and printing method to obtain
the desired functional films. Figure 5(a) illustrates a represent-
ative screen-printing process, first depositing the silver ink on
the target flexible substrate (PET) to provide the probe con-
tact pads and enhance conductivity. Next, PEDOT: PSS ink
is deposited via screen printing as designed pattern to ensure
directly contact with the source-drain electrodes (usually car-
bon conductive materials). Most critically, printed gel electro-
lytes or solid electrolytes that connecting gate and channel are
required for high performance OECTs. Finally, the PEDOT:
PSS gate is printed to form the OECT devices [81]. Compared
to the high resolution (in several or tens micrometers) and lim-
ited device size of the photolithography process, printing tech-
nologies enable large-scale fabrication, but with low resolution
(in millimeters and centimeters).

Printed flexible OECTs enable the efficient manufacture of
large-scale, cost-effective electronic devices and seamlessly
integrated systems, offering significant potential for driving
innovative applications within the domain of flexible elec-
tronics. As for screen-printing, Ersman et al demonstrated
large-scale (8 × 9 cm2) integrated circuits (4-to-7 decoder
and seven-bit shift register) by sequentially screen-printed
coplanar flexible OECTs (figure 5(b)). Such printed OECTs
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Figure 5. Screen printing techniques for OECT fabrication. (a) Scheme illustration of OECT fabrication process based on all
screen-printing technique and corresponding device. Reproduced from [81], with permission from Springer Nature. (b) Illustration of a
4-to-7 decoder achieved by NAND gates and inverters, and a photo of the fully printed decoder with 87 OECTs. Reproduced from [32], with
permission from Springer Nature.

exhibit a low operating voltage of 0.5 V and excellent uniform-
ity of electrical performance (variation as low as 1%), provid-
ing a facile large-scale manufacturing route towards advanced
Internet of Things applications [32]. More recently, screen
printed flexible OECTs have also been reported for using as
artificial spiking neural circuits [150]. Simone et al screen-
printed Ag 5000 silver ink (source-drain electrodes) and insu-
lating 5018 ink (dielectric layer) onto PET substrates via
screen-printing equipment. And they blade-coated Ag/AgCl
ink (as the gate) and spray-casted P(g2T-T) and BBL (as the
channel) through shadow masks. The successful demonstra-
tions of short-term and long-term plasticity (LTP) (retention
>1000 s) offer printed OECTs a new perspective for artificial
neural systems that could be integrated with bio-systems.

Although numerous research have proved the availability
of OECTs fabricated via screen printing techniques, there is
also an urgent need for other printing techniques to meet the
growing demand and enable high-throughput preparation of
material and device concepts. In sight of this, inkjet print-
ing holds several advantages over commonly used screen
printing, as it offers enhanced flexibility in selecting mater-
ials, preparing functional inks, and designing patterns. To
optimize the pliability of the gold electrodes in OECT loc-
ated on wavy surfaces, a semiconductor layer with excep-
tional conductive properties has been delicately applied via
inkjet printing onto the Au surface (figure 6(a)). This process
effectively connects the disjointed sections that were previ-
ously isolated by cracks. The resultant flexible OECTs exhibit
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Figure 6. Printing techniques for flexible OECT. (a), (b) Scheme illustration of OECT fabrication process based on inkjet printing
technique and corresponding flexible/stretchable devices. [152] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim. [153] John Wiley & Sons. © 2020 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH. (c), (d)
Optical images of flexible OECTs based on 3D printing technique. Reprinted from [154], Copyright (2019), with permission from Elsevier.
Reproduced from [79], with permission from Springer Nature. (e), (f) Schematics of flexible OECT based on transfer printing technique.
Reproduced from [82], with permission from Springer Nature. Reproduced from [107], with permission from Springer Nature.

stretchability of up to 30%, while retaining reliable perform-
ance even when bent to a radius as small as 15 mm [152].
In addition, inspired by the natural world, inkjet printing for
producing OECTs has also been presented to generate semi-
conducting thin films (figure 6(b)), with the ultimate goal of
achieving high-performance devices. These remarkable flex-
ible OECTs exhibit depletion mode operation, coupled with
pulse depression behavior, showcasing compelling evidence
of their adaptability and reinforcing their potential as neur-
omorphic electronics [153]. It is worth noting that 3D printing

technology was also introduced in this work, 3D printing is
that it allows for the creation of highly detailed and intricate
designs with speed and accuracy, making it a versatile and effi-
cient OECT manufacturing strategy. For example, Fan et al
presented a fully 3D printed flexible OECTs via PEDOT:PSS
inks as transistor channel and silver as source and drain elec-
trodes (figure 6(c)). High transconductance (∼31.8 mS), low
working voltage (∼0.1 V) and high current ON/OFF ratio
(∼1.33 × 103) can be realized [154]. 3D-printed OECTs
can also be manufactured on flexible substrate with high
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Table 4. Summary of typical examples of flexible OECTs.

Manufacture
techniques Device structure Functional materials

Electrical
performance

Mechanical
performance References

Photolithography Vertical PET/Au/PEDOT:
SS/AgNWs/Ion gel/Au

gm = (64.25± 1.49) mS Radius 10 mm, 1000
cycles

[92]
on/off ratio ∼ 100
τ on ∼ 0.3 ms,
τ off ∼ 1 ms

Photolithography Top-gated PDMS/Au/PEDOT:
PSS/PBS

gm = 0.432 mS 60% strains [125]
Signal-to-noise
ratio of 12.2 dB

Photolithography Side-gated PET/Au/PEDOT:
PSS/PBS

Signal-to-noise ratio of
3 dB

Bendable [137]

τ on ∼ 0.6 ms,
τ off ∼ 3 ms

Photolithography Top-gated PET/Au/ PDPPODT-TT/
BMETA-Cl/Au

gm = 15.1 µS Radius 0.1 mm, 5000
cycles

[142]
on/off ratio ∼ 2 × 105

Photolithography Top-gated Parylene/AgNWs-
PEDOT: PSS/PEDOT:
PSS/PBS

gm = 1.0 mS Radius 0.8 mm [158]

Printing Top-gated SEBS/Au/DPP-g2T/KPF6 gm = (2.47 ± 0.24) mS 150% strains [82]
on/off ratio ∼ 105 1500 cycles

Printing Side-gated PET/Carbon/PEDOT:
PSS/PSSNa

on/off ratio ∼ 105 Bendable [32]
τ on ∼ 30 ms,
τ off ∼ 20 ms

Printing Side-gated Cellulose/Carbon/PEDOT:
PSS/PSSNa + NaCl

gm ∼ 70 S·cm−1 Bendable [149]
on/off ratio ∼ 103

Printing Top-gated PET/Carbon/PEDOT:
PSS/polyelectrolyte

on/off ratio ∼ 104 Bendable [81]
τ on ∼ 20 ms,
τ off ∼ 225 ms

Printing Side-gated PDMS/Au/PEDOT:
PSS/PBS

on/off ratio ∼ 100 30% strains [152]

environmental and mechanical stabilities for biosensor applic-
ations (figure 6(d)) [79].

Due to the low glass transition temperature, conven-
tional metal electrodes cannot be deposited easily onto
stretchable elastomer substrates with reliable mechanical
performance. To solve this problem, Chen et al transfer-
printed Au electrodes and free-standing honeycomb films
(poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-
diketo-pyrrolopyrrole-alt-2,5-bis(3-triethyleneglycoloxy-
thiophen-2-yl)), DPP-g2T) on pre-stretched SEBS substrates
[82]. As shown in figure 6(e), outstanding electrochemical
and mechanical properties have been obtained, including
high ON-OFF ratio up to 105, normalized peak gm up to
(24.91 ± 1.47) S cm−1, and more than 1500 switching cycles
under 30% tensile strain. Wang et al also presented a general
platform via transfer printing LiTFSI doped PEDOT: PSS
to an elastic gelatin electrolyte (figure 6(f)), elastic OECTs
with high transconductance (∼12.7 mS), mechanical stabil-
ity, long-term environmental durability, and sustainability are
realized simultaneously [107]. Therefore, transfer printing of
OECTs offers several advantages, including high-resolution
printing with excellent durability. It is also versatile and
applicable to an extensive range of materials and shapes,
allowing for greater design flexibility. Additionally, transfer
printing allows for efficient production and reduces waste,
making it a cost-effective option for businesses.

Although the use of printing technology has certain mer-
its in terms of large-scale production and related applica-
tion, the challenges and opportunities inherent in the situation
require further addressed. The resolution of the printing tech-
nology utilized in OECT is limited, and conventional print-
ing with feature line widths and spacing in excess of 10 µm
means that smaller patterning accuracy is difficult to achieve,
thus developing new printing technology to break through res-
olution is highly expected. The second is the limitation of
printing OMIEC materials, with respect to the most widely
used PEDOT: PSS materials, more efficient ionic–electron
coupled and transport materials for printing need to be further
developed.

Themanufacturing techniques for OECT devices are highly
relied on the device structure and functional materials, and
the output performance of the fabricated devices exhibit sig-
nificantly batch to batch variations. For example, table 4
demonstrates the broader applicability of photolithography to
a variety of semiconductor materials beyond PEDOT: PSS.
In contrast, printing technologies may exhibit restrictions
with respect to the selection of functional materials and the
attainment of desired electrical and mechanical performance.
However, by designing the device structure carefully, it is pos-
sible to achieve significant improvements in device perform-
ance. Especially, vertical structures can exhibit performance
levels in the milliampere range (approximately 1–3 orders of

13



Int. J. Extrem. Manuf. 6 (2024) 012005 Topical Review

magnitude enhancement), which opens up new avenues for the
development of OECT manufacturing technology.

5. Applications of flexible OECT

Flexible OECTs are regarded as the solid foundation for bio-
electronics applications owing to their intrinsic signal amp-
lification, low power consumption, and excellent biocompat-
ibility. With the continuous evolution of flexible materials
and advanced manufacturing, substantial progress of OECTs
have been achieved in bioelectronics, especially for biocom-
patible sensors and bioinspired neuromorphic systems. This
section focuses on three bioelectronics applications of flexible
OECT, including physical/chemical/biosensors, artificial syn-
apses and neurons, and biomimetic nervous systems.

5.1. Physical, chemical and biosensors

OECT-based flexible physical sensors have been developed to
detect pressure, light, as well as temperature, which are expec-
ted to real-time monitor biological indicators such as tactile
touch, blood pressure, body temperature, etc [37, 139, 159–
162]. For instance, as illustrated in figure 7(a), Chen et al
demonstrated a flexible OECT for sensitive haptics sensing,
employing a solid polymer electrolyte of EMIM-TFSI doped
PVDF-co-HFP that promotes reliable and stable electrochem-
ical response of PEDOT: PSS and P3HT [159]. Such sensor
showed high sensitivity (10 828.2 kPa−1), excellent stability of
(more than 2 months’ operation), low limit of pressure detec-
tion (1.1 Pa), and ultra-low power consumption (<5 µW).
Attributed to the reliable flexibility, reproducibility, durability,
and scalability of OECT haptic sensor, a 6 × 6 pixel flexible
pressure sensor array was demonstrated to capture temporal
and spatial pressure distributions. The results presented here
suggest that all-solid-state OECTs are promising candidate
for sensing haptic signals for health monitoring and human–
computer interaction interfaces. Meanwhile, large-area, high-
density OECT tactile sensory array with skin-like functions
via the combination of advanced manufacturing processes is
highly expected.

Chemical sensors are instruments that are sensitized to vari-
ous chemical substances (such as chemical molecules, ions,
and gases) and translate their concentrations into correspond-
ing electrical signals for detection. Analogous to the human
sense organs, chemical sensors correspond to the human sense
organs of smell and taste, which can also sense certain sub-
stances that cannot be sensed by human organs, especially
special ions (e.g. Ca2+, K+, Na+, Cl−) and gases (e.g. NO,
NO2, H2S) related to the physiological state of the body [52,
163–166]. For example, NO exhibits functions that are essen-
tial in biological systems, which is thought to be a physiolo-
gical mediator of endothelial cell diastole and has a signific-
ant role in lowering blood pressure. The continuous detecting
of NO gas is of tremendous concern for therapeutic and dia-
gnostic applications. Deng et al proposed a flexible, wireless
NO sensor via OECT device, typically, the oxidation reaction

of NO, which takes place at the gate, serves as a contribut-
ing factor to the increase in potential at the interface between
the channel and electrolyte. This dedoping process becomes
evident through a decrease in the drain current. Wide sensing
range of 0–1 µM and high sensitivity up to 94 mV dec−1 have
been achieved, which far exceed those of conventional sensors
(figure 7(b)). It is encouraging to note that the OECT-based
sensor device accomplished wireless and real-time detecting
of NO in the joint cavity in 8 d, which could provide import-
ant evidence for early preventive treatment and diagnosis of
post-traumatic bone and joint injuries [163]. Hence, the devel-
opment of more in vivo and in vitro flexible/stretchable sens-
ing platforms based on OECT for chemical signal sensing
is important for healthy environment and disease prevention.
Furthermore, chemical ion sensors provide valuable informa-
tion on the presence and concentration of specific ions, from
environmental monitoring to biomedical analysis, which is
important for monitoring human health processes. Pierre et al
showcased an integrated system, representing a significant
advancement in the realm of ion sensing, that encompasses
miniaturized ion-selective flexible OECTs and a straightfor-
ward multiplexed circuit [165]. The resulting flexible sensor
array allows the monitoring of multiple ions at high resolution,
maintains relatively stable OECT performance at a curvature
radius of 1.1 mm, making it a valuable tool in various fields,
including environmental monitoring and biomedical research.
This OECT technology has the ability to revolutionize the
way we can monitor and analyze ions in a variety of envir-
onments, ultimately enhancing our comprehension and regu-
lation of chemical processes both in the natural world and in
human health.

Biosensors are instruments that are sensitized to various
biological substances and translate their concentrations into
corresponding electrical signals for monitoring. It is composed
of immobilized and specific biosensitive materials as iden-
tification elements for analytical tools or systems (including
enzymes, metabolite, antigens, antibodies, nucleic acids, tis-
sues, cells, and other bioactive substances) [137, 158, 167–
169]. OECT devices serve as the fundamental building blocks
of biosensing, enabling objective measurement and evaluation
of biomarkers. These biomarkers serve as indicators of disease
or normal processeswithin biological systems, aswell as being
closely associated with the pharmacological response to thera-
peutic agents. Typically, with the emergence of COVID-19
outbreak and continued spread has become a serious threat to
public health, rapid detection of antibody biomarker is critical
for diagnostic analysis of viral infections. Liu et al construc-
ted an ultra-fast, label-free, low-cost, portable and wireless
platform for SARS-CoV-2 immunoglobulin G (IgG) detection
via miniaturized OECT technology with gate functionaliza-
tion in figure 7(c). The principle of rapid detection involves
enhancing the binding between the antigen and antibody by
applying a voltage pulse to the OECT gate electrode. A spe-
cific assay for detecting SARS-CoV-2 IgG was conducted
within minutes, encompassing a detectable range from 10 fM
to 100 nM. This range effectively covers the levels of SARS-
CoV-2 IgG found in human serum [137]. To some extent,
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Figure 7. Physical, chemical and biological sensors based on OECT. (a) All-solid-state flexible OECTs with contact-modulated ion doping
modes for ultra-sensitive haptic sensor. [159] John Wiley & Sons. © 2020 Wiley-VCH GmbH. (b) High sensitive OECT-based gas sensor
for wireless and continuous NO detection. Reproduced with permission from [163]. (c) Sensitive, ultrafast and portable monitor of
COVID-19 IgG using flexible OECT-based biosensors. From [137]. Reprinted with permission from AAAS.

OECT-based biosensors can overcome the drawbacks of con-
ventional devices, such as bulky and immobilized assays, and
contribute to the rapid prediction, screening, diagnosis and
treatment of diseases.

Multimodal sensing capabilities are indispensable in bio-
electronic applications for complicated diagnoses and smart
healthcare. In general, multimodal neuromorphic devices with
multiple perceptual abilities are realized by integrating mul-
tiple sensing units [72, 170, 171]. For example, as illustrated
in figure 8(a), Takemoto et al integrated a fully transpar-
ent flexible OECT with a photodetector, near-infrared laser,
and micro-light-emitting diode (µ-LED) to monitor mental
stress from the perspectives of electrophysiological, optical,

and ionic methods [170]. To obtain electrical signals for elec-
troencephalogram sensing, the human forehead can be util-
ized both before and after the eyes are opened, and they
were employed to the OECT gate, leading to the variation
of drain current. For blood flow sensing, a vertically placed
laser Doppler flowmetry was used, and the near-infrared laser
(∼780 nm) from µ-LED can easily be transmitted by OECT
due to its high transparency (∼90%). For the ion sensing
of nitrate, ion-selective electrodes were chosen to modify
the gate in order to enhance sensitivity, and a high sensitiv-
ity of 2.2 µA dec−1 was obtained. Furthermore, regulations
for measurement conditions and device configuration have
been reported for the realization of multimodal neuromorphic
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Figure 8. Flexible OECTs for the application of multimode sensors. (a) Cross-sectional illustration and optical image of the integrated
multi-mode OECT-based system. [170] John Wiley & Sons. © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. (b)
Experimental setup for gate impedance measurements and square wave voltammetry measurements, and the optical image of printed
flexible OECT sensors. Reprinted from [171], Copyright (2023), with permission from Elsevier. (c) Ionic contribution in
volatile/non-volatile modes, and schematic illustration of crystalline vertically (cv)-OECT as volatile multi-mode sensor, as well as the
optical image of flexible cv-OECT. Reproduced from [72], with permission from Springer Nature.

devices. Strand et al introduced DC modes (resistive, poten-
tiation, and potentiodynamic) and AC modes (electrochem-
ical impedance spectroscopy and square wave voltammetry)
simultaneous detection of electrical conductivity, pH and tem-
perature of active hydroponic growth environment with single
device (figure 8(b)) [171]. As shown in figure 8(c), Wang
et al implanted a crystalline–amorphous channel (PTBT-p) of
OECT that can be selectively doped in the volatile and non-
volatile modes [72]. In volatile mode, OECT synapses demon-
strate the ability to detect multi-modal signals, including light
and ions. In non-volatile mode, these synapses exhibit 10-
bit analog states, excellent state retention and low switching
stochasticity.

5.2. Synapse and neuron emulation

Neuromorphic engineering aims to create brain-inspired sys-
tems via emulating the structure and function of biological
neural networks. One crucial element of such systems is
the advancement of proficient and scalable artificial syn-
apses and neurons that emulate the biological synaptic beha-
viors, encompassing short-term plasticity (STP), LTP, paired
pulse facilitation (PPF), and paired pulse depression (PPD).

Such bioinspired artificial synapses and neurons play sig-
nificant roles in achieving sensory functions, memory stor-
age, and computational capabilities. Recently, OECTs have
been implanted in various neuromorphic devices, and excit-
ing advancements have been obtained. Therefore, this section
presents a comprehensive overview of the most recent
advancements in flexible synapses and neurons based on
OECT technology.

For synapses in biological nervous systems, signals are
achieved via the exchange of different molecular species or
ions. The presynaptic membrane contains a large number
of synaptic vesicles encapsulated with neurotransmitters that
accumulate in the active zone of the presynaptic membrane.
Once the action potential reaches the presynaptic membrane,
the synaptic vesicles moored in the active zone fuse with
the cytoplasmic membrane and releasing neurotransmitters
into the synaptic gap and captured by postsynaptic mem-
brane receptors, thus enabling the transmission of informa-
tion. OECTs can serve as alternative platforms for artificial
synapse emulation due to their structural properties of phys-
ical separation input and output terminals [25, 27, 92, 172,
173]. Thus, synaptic weight (channel conductivity, G) can
be accurately modulated in a capacitance coupling manner
between the transport (source and drain electrodes) and the
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Figure 9. Flexible OECTs for functional emulation of biological synapses and/or neurons. (a) Low-voltage artificial synapses for
neuromorphic computation based on non-volatile OECT. Reproduced from [172], with permission from Springer Nature. Reprinted from
[25], Copyright (2022), with permission from Elsevier. Reproduced from [15], with permission from Springer Nature. (b)
Neurotransmitter-mediated artificial synapses via flexible OECTs. Reproduced from [174], with permission from Springer Nature. © [2022]
IEEE. Reprinted, with permission, from [175]. [176] John Wiley & Sons. © 2023 Wiley-VCH GmbH. (c) OECT-based neurons circuit and
synapses with ion mediated events. Reproduced from [150], with permission from Springer Nature.

control (gate electrode) terminal. Through sequential read or
write processes via pulse voltage, it is desirable for synaptic
transistors to decouple STP and LTP, thus becoming a natural
and appropriate medium wherein both synaptic STP and LTP
can be independently induced and expressed. Van De Burgt
et al initially reported the flexible synaptic OECT, which
comprises postsynaptic electrode, the PEI/PEDOT:PSS film,
and is connected to the presynaptic electrode of PEDOT:PSS
via a liquid electrolyte (figure 9(a)). The results showed that
the device exhibits a series of synaptic functions, which are
worked as essential building blocks for neuromorphic compu-
tation. To indicate the modulation of the non-volatile state of
the mimicked synapses, a series of 500 pulsed gate voltages
were also applied to produce 500 different conduction states,

indicating their short- and long-term plasticity. Besides, as a
simple demonstration of the learning function, the integration
of synaptic OECT into a circuit simulating Pavlovian learning
was successfully proved for the associative memory of arti-
ficial synapses [172]. Since then, flexible and/or stretchable
synapses have been gradually demonstrated for using in the
fields of AI-based classification of health signals and image
sensing-and-keeping cognitive, (optical images can also be
seen in figure 9(a)) and their potential applications are con-
stantly evolving [15, 25].

Currently, most OECTs record the local-electric field
that generated by action potentials through ionic-electronic
coupling and use the potential difference to achieve the
regulation of synaptic functions. However, in biological
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systems, long-term connections between neurons are con-
trolled through chemical signal and released neurotransmitters
into corresponding synapses. To mimic synaptic behavior, sig-
nificant advances have also been introduced in the connectivity
of synaptic devices (e.g. synaptic weight) mediated dynamic-
ally by neurotransmitters [174, 175]. As shown in figure 9(b),
a functional biohybrid synapse was developed with the PC-
12 cells acting as the presynaptic domain and OECTs serving
as the postsynaptic structural domain. Dopamine plays a cru-
cial role in regulating synaptic signaling between neurons, in
particular, regulating synaptic plasticity and affecting LTP and
LTD of synapses. Qiu et al also reported a flexible dopam-
ine neurotransmitters mediated OECT synaptic device, not
only the STP behavior dominated by ion dynamics is demon-
strated, but also the LTP synaptic behavior generated by redox
reactions [175]. A flexible, biomimetic olfactory synapse is
achieved through the coupling of OECT with the breath-figure
technique. This synapse exhibits gasotransmitter-mediated
synaptic plasticity, encompassing short-term memory (STM),
long-term memory (LTM), training from STM to LTM, and
more. It allows for the emulation of cumulative damages that
may result from exposure to gases [176], as also depicted in
figure 9(b).

Despite the success of OECT in simulating artificial syn-
aptic functions, limited attempts are made to OECT-based
artificial neurons, which are critical to encode event-based
information and reflects the processing in biological nerve
systems [150, 177–179]. As depicted in figure 9(c), Harikesh
et al introduced the first flexible OECT spiking neuron,
demonstrating diverse learning behaviors, such as short-term
and long-term potentiation and inhibition, along with spike
time-dependent plasticity. This neuron can be efficiently
screen printed onto flexible substrates, offering a larger area
and lower power consumption compared to OFET-based cir-
cuits, providing an available strategy for next-generation neur-
omorphic computing with distributed neurons networks. The
spike frequency can be directly regulated by altering the input
current, film capacitance, and the voltage of the input ampli-
fier. To some extent, the research difficulties of artificial neur-
ons involve overcoming issues such as the limited understand-
ing of biological neurons, the challenge of developing efficient
neuron circuit, and the need for more sophisticated system to
support the biological demands of neural networks. Hence,
comprehensive investigations into OECT-based synapses or
neurons present the opportunity to seamlessly integrate loc-
alized artificial synaptic systems with the signaling systems of
sensing, as well as the peripheral and central nervous systems
of the organism.

Without any doubt, a power supply is indispensable for
driving the operation of neuromorphic devices. However,
power supply has a negative effect on the neuromorphic
device’s construction in terms of system complexity, flex-
ibility, and energy consumption. To overcome these limit-
ations, self-powered neuromorphic devices have been pro-
moted as an effective solution, where the OECT artificial syn-
apses are triggered by the output of self-powered sensors.
Generally, the power consumption of synapse transistors is the

sum of resistive-related energy and capacitive-related energy
[180]. The resistive-related energy is calculated as the mul-
tiplication of the drain voltage, drain current, and the dura-
tion time of the trigger pulse, whereas the capacitive-related
energy is defined as C × Vp

2/2, where C and Vp represent
the effective capacitance and the externally supplied presyn-
aptic spike voltage, respectively. For example, a tactile sensory
system that consists of resistive pressure sensors would con-
sume capacitor-related energy, while self-powered systems
would not [181]. Recently, a self-powered artificial auditory
nerve has been developed that integrated a triboelectric acous-
tic sensor and a fast-response transistor synapse, as displayed
in figure 10(a) [182]. The periodic contraction and separation
between two friction layers of a triboelectric acoustic sensor
leads to the back-and-forth motion of electrons and the form-
ation of alternating current output. Then the output was con-
nected to the gate terminal of the synaptic transistor via an
operational amplifier and bridge diode. Besides, piezoelec-
tric nanogenerators (PENG) [183] and perovskite solar cells
(PSC) [184] have been implanted into the flexible OECT-
based neuromorphic systems to enable the self-powered prop-
erty. As shown in figure 10(b), a self-powered tactile sens-
ory synapse was built by coupling PENG tactile sensor and
transistor synapse [183]. As depicted in figure 10(c), novel
PSC with high open-circuit voltage of 0.77 V was introduced
for indoor light energy harvesting and powering the OECT
synapse [184]. Such self-powered PSC-OECT integrated sys-
tem could operate consistently and effectively at light radiation
intensities ranging from 0.13 to 100 mW cm−2. What can be
expected is that more self-powered biocompatible electron-
ics will be integrated into flexible neuromorphic systems for
energy supply and signal sensing, such as thermoelectricity,
organic photovoltaics, and biofuel cells [185].

5.3. Bioinspired nervous systems

The human brain, with its impressive 86 billion neurons, is
capable of receiving and collecting signals from a wide range
of external stimuli such as sight, touch, hearing, smell, and
taste, and then transmitting the relevant information to specific
areas within the complex network of the nervous system. The
harmonious interplay and intricate interconnection of neural
signals within neural networks beautifully pave the way for
the emergence of exalted cognitive capacities. These remark-
able processes encompass an array of awe-inspiring mental
faculties, including the seamless integration of information,
recognition, recognition, reasoning and imagination Drawing
inspiration from the intricate nervous systems found in bio-
logical organisms, it is of paramount importance to develop
and execute proficient neuromorphic devices while possess-
ing a comprehensive comprehension of biological neurons,
synapses, and brain functionalities [186–190]. Therefore, the
integration of various sensors with OECT-based synaptic
devices have been explored as artificial neuromorphic systems.
Such platforms not only sense various stimuli from surround-
ing environment, but also perform functions such as percep-
tion, learning, memory, computation, and feedback.
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Figure 10. Self-powered neuromorphic systems. (a) Circuit diagram of the auditory nervous system where a triboelectric nanogenerator
was employed to monitor the sound signal and drive the OECT. [184] John Wiley & Sons. © 2021 Wiley-VCH GmbH. (b) Diagram of
self-powered piezoelectric artificial sensory synapse and corresponding circuit for piezoelectric potential and ion-gel coupling effects. [183]
John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Schematic diagram of self-powered OECT with two
series-connected perovskite solar cells integrated and its corresponding circuit diagram. [184] John Wiley & Sons. © 2021 Wiley-VCH
GmbH.

For instance, Shim et al developed remarkable OECT syn-
apses through elastomer materials, and such synapses yielded
various synaptic behaviors (figure 11(a)) [191]. Even when
stretched by 50%, the rubbery synapse still retains all of its per-
formance. A deformable sensory skin was further developed
by integrating stretchable OECT with mechanoreceptors in
the form of arrays in which mechanoreceptors are connected
to external stimuli and generate presynaptic pulses, followed
by in-depth demonstrates neurobot that can perform adapt-
ive robot stored in a programmable manner during physical
tapping of the skin. Lee et al reported stretchable optoelec-
tronic sensorimotor systems via using organic optoelectronic
synapse, where single-wall CNTs and FT4-DPP nanowires
were used as electrodes and redox active channel [187]. In
this system (figure 11(b)), self-powered photodetector sense
external optical signals and generate voltage pulses. Then
these pulses drive the stretchable OECT synapses, and the
postsynaptic currents are formed. Besides wireless optical
communication, this system can serve as artificial muscle actu-
ators that operate in the same manner as biological muscle
fibers. This combination of optics, electronics, and biological
technology provides promising strategies for the development
of next-generation biomimetic neurosoftware electronic [192].
In addition to optoelectronic system, an artificial olfactory sys-
tem capable of mimicking sense, filtration, learning, and for-
getting functions has also been gradually demonstrated. For
instance, Chouhdry et al have introduced an artificial chemo-
sensory neuronal synapse, drawing inspiration from the intric-
ate neuronal network discovered within the glomerulus of the
olfactory bulb [193]. The proposed system detects chemical
stimuli and emulates the functions of inhibitory and excit-
atory synapses among olfactory receptor neurons, projection

neurons, and interneurons (figure 11(c)). The device employs
a flexible OECT that is controlled by the potential generated
through the interaction of gas molecules (NO2) with ions in a
chemoreceptive ionogel. Essentially, this system has the cap-
ability to replicate the synaptic functions of chemical synapses
in the olfactory system, thereby facilitating the progress of arti-
ficial neuronal systems in bionic chemosensory domains.

More recently, in addition to using OECT to construct
a neurological system with learning functions, OECT-based
periprosthetic devices to repair movement in limbs with nerve
damage due to spinal cord or lower motor neuron injury
have also aroused attention. The concept of the periprosthetic
device is to send electrical signals of the nerve form to the
muscle as a functional replacement for the damaged nerve
by bypassing the injured or damaged nerve in the spine. Lee
et al proposed a stretchable OECT neuromorphic efferent
nerve that bypasses broken electrophysiological signal path-
ways and redirects electrophysiological signals that control
bodymovements [188]. It facilitates the restoration of coordin-
ated and smooth movement in mice with neuromotor dis-
orders, allowing them to kick, walk, or run (figure 11(d)).
This work paves the way for a novel pathway in neuro-
logical repair using OECT. In the future, straightforward
systems that harness the principles of neuroplasticity could
hold tremendous potential as bioengineering technologies for
facilitating voluntary movements in animals with locomotor
impairments.

In summary, the design and implementation of efficient
neuromorphic devices that mimic the biological nervous sys-
tem are critically important for the development of next-
generation bioelectronics. The integration of various sensors
with flexible OECT synapses enable the realization of
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Figure 11. Flexible OECTs for biological nervous systems. (a) Deformable sensory skin developed by integrating stretchable OECT with
mechanoreceptors in the form of arrays. Reproduced with permission from [191]. (b) Organic optoelectronic sensorimotor system, utilizing
organic optoelectronic synapse alongside with neuromuscular system that relies on stretchable OECTs. Reproduced with permission from
[187]. (c) Schematic illustration of the proposed artificial chemosensory synapse, that can be gated via both chemical (NO2) and electrical
stimuli. Reproduced from [193], with permission from Springer Nature. (d) A stretchable neuromorphic implant enables the restoration of
coordinated and fluid movement in the legs of mice with neurological movement disorders, granting them the ability to kick, walk, or run
seamlessly. Reproduced from [188], with permission from Springer Nature.

functions such as sensing, learning, memory, computation,
and feedback. Representative examples of such systems are
optoelectronic motor systems, artificial olfactory systems, and

prosthetic devices for neurological repair (table 5). Hence,
the construction of versatile neuromorphic OECTs emerges
as a promising avenue towards advancing the development of
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Table 5. Summary of bioinspired neuromorphic applications of OECT.

External sensors
Channel/electrolyte
materials of OECTs

Mechanical
properties Synaptic behaviors Applications References

Pressure P3HT/Ion gel Stretchable (50%) EPSC, PPF, STM,
LTM

Tactile sensory [191]
Adaptive
neurorobotics

Pressure Polymer (P1)/Ion gel Flexible EPSC, PPF Artificial afferent
nerve

[181]

Pressure DPPDTSE/Polyelectrolyte Stretchable (100%) EPSC, PPF, STP Biological
sensorimotor loop

[194]
Temperature
Visual FT4-DPP/Ion gel Stretchable (100%) EPSC, PPF Optoelectronic

sensorimotor, muscle
actuator

[187]

Visual P3HT/Ion gel Stretchable (30%) EPSC Neuromorphic
cognitive functions

[192]

Olfactory PEDOT: PSS/Ion gel Flexible EPSC, LTP, LTD Biomimetic
chemosensory

[193]

Olfactory PEDOT: PSS/Ion gel Flexible IPSC, PPD, STM,
LTM

Biomimetic olfactory [176]

Strain FT4-DPP/Ion gel Stretchable (100%) EPSC, PPF Proprioceptive
feedback

[188]

Nerve repair
Ion, amino acid,
Neurotransmitter

BBL/NaCl / Spike Stimulate biological
nerves

[178]

Neurotransmitter PEDOT: PSS/NaCl / Spike Spiking neuron
biohybrid interface

[179]

bioinspired nervous systems, encompassing a wide array of
unexplored applications.

6. Summary and outlook

Over the past decades, significant advancements in flex-
ible electronics have facilitated the development of OECTs,
including material design, novel device architecture, and
optimized manufacture technologies. The progress in flexible
and stretchable OECTs lead to breakthroughs in the fields
of intelligence sensors, human-machine interface, and neur-
omimetic modulation. Meanwhile, the performance of flex-
ible and stretchable OECT-based systems has reached the level
comparable to the rigid counterparts. This progress makes
flexible OECTs a considerable candidate for next-generation
intelligent bioelectronics. However, there remains a consider-
able journey ahead to realize these aspirations. Particularly,
operation stability, tissue-conformable mechanical properties,
manufacturing techniques and bioinspired integration schemes
need to be addressed.

(1) Operational stability: the stability represents the ability to
perform reliably during the operation and storage time.
Decay in functional materials and external environmental
factors (light, heat, and humidity) have negative effect on
operational stability. Besides, the continuous electrochem-
ical doping/de-doping process during operation accelerate
the functional materials degradation, leading to a short-
term stability. So far, most OECT devices have experi-
enced a cycling stability of less than 5000 cycles [13, 73,

195, 196], and such value can be gradually up to 50 000
times through the combination of micro- and nanostruc-
ture of the OMIECmaterial with the newly created vertical
device structure [14]. To facilitate the commercialization
of OECTs, strategies to design and manufacture OECTs
with reliable stability is highly expected. Specifically,
materials design and structure engineering can be further
introduced to enhance the operational stability, such as
manipulating the crystallinity [8, 72, 110, 197, 198], intro-
ducing additives to OMIEC film [116, 199, 200], adopting
solid-state electrolytes [121, 159, 201, 202], and introdu-
cing vertical configuration [14, 90, 203].

(2) Mechanical properties: OECT-based systems need to
be flexible, stretchable, and skin-comfortable, so as to
enable good wearability and reliable contact with the tis-
sues. Matching the mechanical properties of soft tissues,
such as Young’s modulus (1 kPa–10 kPa) and tensile
strain (∼30%), is a complex and ongoing research area.
Therefore, more flexible device manufacture techniques
and material investigations are first desired to optimize the
mechanical performance and interfacial adhesion between
different device layout components and contact regions, to
delve into the details of failure mechanisms for crack ana-
lysis during device deformation [204]. In addition, while
the ‘soft’ nature of flexible/stretchable devices may be
an opportunity to discover new approaches, these efforts
have not yet been fully explored in flexible/stretchable
OECT devices, which are mainly used for rigid OECT
devices [20]. Nonetheless, the progress in developing low
modulus flexible/stretchable material components, such as
electrodes, OMIEC materials, and electrolytes, capable of
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enduring deformation while simultaneously maintaining
excellent electrical properties, is highly encouraging.

(3) Manufacturing techniques: OECT fabrication still faces
many challenges, including material incompatibility and
poor adhesion between the active layer and flexible sub-
strates. Novel material synthesis and advanced manufac-
turing techniques are expected to be further explored for
reliable and efficient device performances. In addition,
scalability and reproducibility are significant obstacles in
flexible OECT fabrications. As device fabrication enlarges
from lab-scale to commercial-scale, it is essential to offer
uniform device performance, high throughput, and low
cost. This involves optimizing the fabrication paramet-
ers, scaling up the deposition techniques, and establishing
quality control measures to ensure batch-to-batch repro-
ducibility. Overcoming these obstacles will pave the way
for the widespread adoption of flexible OECTs in various
applications, including wearable electronics, and biomed-
ical devices.

(4) Integration schemes: attention has been paid to expanding
flexible OECT devices to intelligent systems owing to their
great potential in wearable electronics and bioelectron-
ics. However, most current OECT applications are only
available for single functions, such as sensor, or synapse,
and there is a dearth of biological nervous system devel-
opment using OECT as building blocks, which paves a
new approach for bionic sensing integration. For example,
integration schemes of flexible OECTs with other smart
electronics (such as pressure sensors, gas sensors, solar
cells, photodetectors, and light-emitting diodes) gradu-
ally achieve intelligent electronic systems with mul-
tiple advanced functions [99, 139, 160, 205]. Extending
its integration with sensors, actuators, and self-powered
electronics devices to achieve self-powered, closed-loop,
multiple-function artificial sensory and/or neuromorphic
systems is also highly expected to open upmore possibilit-
ies for flexible OECTs. This would promote their commer-
cialization and then significantly change the way humans
interact with the world.
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